
EXPOsOMICS from a Big Data perspective: Interview with 

Professor Paolo Vineis, PI of the EXPOsOMICS Project 
 

As the EXPOsOMICS project is entering its 3rd year. Prof Paolo Vineis talks to Dr Stefano 

Canali about the project and takes a fresh look at the EXPOsOMCS project through the 

perspective of philosophy of science.  

 

Interviewer: Stefano Canali (SC) 

Interviewee: Prof. Paolo Vineis (PV) 

 
SC: The EXPOsOMICS project studies the relation between exposure to environmental 

factors and chronic disease. Through innovative statistic methods, it aims at 

individuating biomarkers that are capable of tracing the exposure to environmental 

factors and the development of the disease. The objective is to find associations 

between these two, i.e. biomarkers of exposure and biomarkers of disease. Thanks 

to these biomarkers one can make predictions. For instance, if we know that 

there’s been an exposure to a certain type of element of the air; we might be able to 

say that there is an increased probability of getting a disease, in particular if 

relevant biomarkers are detected. Besides predictions, your goal is also to 

influence policies and suggest a series of environmental and public health policies. 

Can you tell me more? 

 
PV: Yes the project has also a policy aspect. For example, I am currently working at a 

document for the US National Academy of Sciences on how OMICS methods can be 

used to predict disease and possibly substitute for instance animal tests in the future, if 

we become able to identify robust molecular alterations that consistently predict disease. 

One of the goals of the committee of the US National Academy of Sciences is to be able 

to precisely estimate risks associated with different levels of exposure using biomarkers 

as predictors. 

 

SC: How do you study the statistical associations between biomarkers of exposure and 
biomarkers of disease?  

 

PV: There are two steps to the study of associations: one is agnostic, meaning that 

associations are searched without a priori hypotheses; the other, instead, is guided by a 

priori hypotheses, for instance biologically-informed (e.g. through prior experimental 

knowledge) biological pathways affected by a certain exposure and/or involved in the 

disease development. For example, oxidative damage to DNA is a typically investigated 

pathway. 

 

SC: An important aspect of your work is the meet-in-the-middle approach. From a 

certain point of view, with this approach you go beyond statistical associations.  

When a statistical association is found in the data, the aim of the approach is 

validating the association using biomarkers, because there may be issues with a 

complete reliance on statistical associations, such as confounding. 

 

PV: Yes, sure. There are two things worth mentioning here. One is Bradford Hill’s guidelines. 

Bradford Hill was an English statistician who dealt with the issue of tobacco smoking 

when tobacco companies denied that there was a relation with lung cancer, saying that it 

was only a statistical association and not a causal relationship. He established a set of 

guidelines allowing to establish when it is probable that the relation is causal and not only 

statistical; one of these guidelines is biological plausibility, which means that for example 

there are changes in intermediate markers or molecules like DNA that reinforce the 



causal nature of the observation. So Bradford Hill’s is one approach. The other approach I 

refer to is a philosophy of science text that is a reference book for me, i.e.  Wesley 

Salmon’s book that introduced the idea of “propagation of a mark”, which is very similar to 

the meeting-in-the-middle approach (the propagation of a mark from exposure to 

disease). This is clear in the case of smoking, because we can measure for instance the 

metabolites of nicotine; then we can measure the aromatic hydrocarbons binding with 

haemoglobin and albumin, then the same chemicals binding with DNA; then we can 

identify DNA mutations in smokers comparing them with non-smokers; then we can 

identify alterations of a functional type in DNA such as epigenetics. Finally we can link all 

these events with the same or similar events found in lung cancer cells (specifically 

certain gene mutations like P53). So yes, the inspiration for the meet-in-the-middle comes 

from Wesley Salmon. In practice the meet-in-the-middle is extremely simple as it relies on 

the identification of biomarkers that are both reflecting effects of exposures and also 

contributing to future disease risk.   

 

SC: The search for causality is necessary for your research. Isn’t it? 

 

PV: Yes and the approach is also important in order to go beyond the limits of purely 

descriptive epidemiology, where some exposure is linked with disease, but actually not 

much can be said about biological plausibility and there may be confounding, etc. 

 

SC: Regarding agnostic research, many, including you in one of your articles, speak of 

‘data-driven’ research. According to this idea, one does not have to elaborate 

theories, hypothesis, and models and then test them against the data; it is the data 

which guides research, without the need for any theory, hypothesis, model, etc. 

Can this really be done without existing knowledge?  

 

PV: Actually there has been quite a radical change driven by technology, so research is 

‘technology-driven’ besides ‘data-driven’; this has taken place with GWAS that is the 

studies where researchers look at hundreds of thousands of genetic variants (single 

nucleotide polymorphisms). In these studies there is literally no a priori hypothesis, in the 

sense that all the genetic variants are investigated and prior knowledge is not used to 

filter out some a priori irrelevant variants: so everything is a posteriori. However, the 

interpretation of data is clearly done on the basis of existing knowledge; for instance if you 

see that the variant of a certain gene influences the risk of heart arrhythmia, you look at 

the function of the gene and whether the association has biological plausibility 

(considering that the confounding in the case of genetic associations is less problematic 

than with environmental exposures). There has been a shift because epidemiology has 

always insisted, if you look for example at textbooks, on the formulation of a priori 

hypotheses, and the importance of the study design which should be guided by a priori 

hypotheses. To reduce computational burden and ensure both feasibility and 

interpretability of statistical analyses, prior knowledge is not fully discarded and Bayesian 

approaches are typically aiming at that. This hypothesis-driven philosophy has been 

largely abandoned with omics epidemiology, which places research in an exploratory 

context, seeking for the identification of novel, unreported findings from highly complex 

and large data: that research becomes somehow technology-driven and can be viewed 

as a fishing exercise. Now much research is done with metabolomics, for instance, and 

with epigenetics: you generate a large amount of data and then a posteriori you look at 

their meaning. While these investigations do not necessarily call upon prior knowledge, it 

is interesting to note that the understanding, and ultimately the validation of these novel 

results cannot be achieved without integrating prior knowledge to validate their biological 

relevance. 



 

SC: Can we say that the knowledge you produce from the data is a consequence of an 

integration of a series of statistical instruments? 

 

PV: Yes, I’d first say that different kinds of data require different statistical approaches, 

depending for example on the type, size, and complexity of the data. There is also a sort 

of hierarchy of approaches for a given type of data: as an exploratory approach first we 

begin with the univariate analysis, then we check whether in the data there is evidence for 

potential joined effect: sets of omic signals being more strongly associated to exposures 

or disease risk than the sum of the association of each signal separately. In the latter 

case (potentially identified by the existence of correlations), we use multivariate models, 

which include dimension reduction techniques:  for instance PCA [principal components 

analysis], which builds upon the correlation across omic signals to summarise the data 

without losing information making data more tractable and defining homogeneous pools 

of informative signals. 

 

SC: So, the complexity of both the target systems and the data requires a plurality of 

tools. 

 

PV: Yes. I’d say that statistical models have been developed mainly as a consequence of two 

needs, methodological and biological. Methodological needs: looking at certain data 

structures mainly driven by correlation structures within the data which needs to be 

modelled to inform the redundant information carried across omic signals. Biological 

needs are different, for instance in the case of cancer we know that there is not only one 

cause (a necessary cause). We know only one risk factor which is necessary for cancer 

onset: HPV for cancer of the cervix uteri. Otherwise, we know no necessary cause of 

cancer and it is probable that single cases of cancer are due to a variety of exposures, 

even weak exposures; for instance atmospheric pollution is a known risk factor with 

strong evidence of carcinogenicity, but the association with cancer is weak and probably it 

involves complex interactions with other risk factors. The relationship between exposure, 

risk factors and disease is complex, and requires refined models (e.g. causal network 

models) which are able to assess causality: typically adding to the establishment of a link 

between markers and either exposures or disease risk, the assessment of a direction in 

that link (which marker causes what).  

 

 

SC: Recently there have been many works in philosophy of science looking at what it 

means to curate the data and at the kind of data curation carried out in science. I’ve 

seen that in a few cases you don’t directly collect data, but you use already existing 

databases; if, instead, you have to collect data, do you carry out a specific kind of 

curation? 

 

PV: Well, we do both things. The typical example may be metabolomics, where on the one 

hand (for instance) blood samples are chemically analysed through mass spectrometry or 

nuclear magnetic resonance, and thousands of signals are derived. The first step is a sort 

of data curation and is called pre-processing. It means that we look at out-of-range data 

points, which are clearly outliers; then, in the case of mass spectrometry we remove the 

peaks which are relative to molecules which we are not interested in but are abundant; 

then we look at those variables that influence the quality of data, called nuisance 

parameters. Actually there is a whole series of pre-processing steps. For instance, 

metabolomics or other techniques may be influenced by the day in which the 



measurement has been carried out, or the operator who has used the machine, or the 

reagents (the batch effects). This is quite evident for epigenetics: let’s say that we have 

500 samples but we can analyse one hundred of them at a time (for technical 

constraints); therefore we divide them into five batches, and there is almost always some 

degree of discrepancy between a batch and another, that is if we use the same sample 

for five different batches we have five slightly different results.  Pre-processing is a way to 

curate the data in order to adjust for example for the batch effect, one of the nuisance 

variables. There are some solutions to calibrate the data across batches, including the 

use of quality control samples that are run in each batch. When pre-processing the data, 

measurements are then slightly transformed to ensure that the results from the quality 

control samples (which are the same sample across batched) in consistently measured 

across batches. Further steps are related to the interpretation of the findings. For 

example, in metabolomics we use databases which are key to annotation (i.e. identify 

which signal corresponds to which molecule). This consists in interpreting the 

spectrometry peaks: for instance we find 10 peaks which are statistically associated with 

colon cancer in our observations; those 10 are usually the ones which have withstood all 

the statistical tests (including correction for multiple comparisons) and the pre-processing 

procedures. At this point we try to understand what those 10 peaks mean in chemical 

terms (mass spectrometry only tells us which are the peaks, not which molecules they 

are). In order to discover what these molecules are, we can look at databases and this is 

called annotation. If we are lucky enough, some of those peaks can be found in the 

databases (based on their mass and other chemico-physical properties like retention 

time); usually this is not the case, so annotation requires other chemical work to identify 

precise molecules. 

 

SC: You were saying that there’s been a great change in the technology-driven sense: 

the change consists, on the one hand, in the possibility of carrying out agnostic 

research and, on the one other hand, in working on a huge quantity of data.  

 

PV: Yes, there has been a huge increase in what is called throughput that is the possibility of 

quickly analysing thousands of samples. For instance with GWAS, 2,000/3,000 samples 
for millions DNA variants can be analysed in a few weeks. So there has been this 

increase in the analytical power, but while tremendous improvements in the 
computational power have been achieved in the past decade, in-depth statistical 

analyses, and more importantly, biological interpretation and full exploitation of the results 

still remain suboptimal.  
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