Statistical glossary and perspectives: mainapproaches relevant for Exposomics

MRC-PHE Centre Investigator's Seminar –Exposomics Update – London

Marc Chadeau-Hyam

MRC-PHE Centre Investigator's Seminar – Exposomics – London, 26 Nov, 2014 – p. 1/24

Overview: Exposomics Aims and Design

- \bullet Aims: develop am new methodological framework to:
	- Assessing the biological/molecular effect of high priority environmental exposures (internal exposome)
	- \circ Identify mixture(s) of exposure driving future risks of healthoutcomes (external exposome)
	- \circ \circ Identify how the internal and external exposomes overlap and concur to future risk of chronic disease
	- \circ Account to age-related differential effects $\&$ susceptibility function
- Three main types of effects investigated: different study designs•

Exposomics data

- • Exposure data
	- Air pollution data
	- Water pollution data
- • OMICs data
	- In all studies: adductomics, transcriptomics, metabolomics (MS)
	- In long term (cohort) studies: proteomics and epigenetics
- Age ranges:
	- \circ Young children 0-4 years old
	- \circ Children: 5-9 years old
	- \circ Young adults/Adults: 18-70 years old
- Health outcomes:
	- Children: birth weight, neurodevelopment
	- Adults: CVD, CRC, Asthma

Exposomics data

- 1. Exposure profiling
	- External exposome relating to health outcome
	- Aim: Identify (mixtures of) exposures that drive future risk ofthe health outcome
	- Specifics: several tens of highlycorrelated measures

- 1.Exposure profiling
- 2. OMICs-health outcome profiling
	- \bullet • Internal exposome $vs.$ health outcome
	- \bullet Aim: Identify sets of OMICs prospective and early diseasemarkers
	- Specifics: several thousand of correlated measures
	- \bullet Investigate each ^platformseparately
	- • Integrate the different ^platforms(cross-omic analyses)

- 1.Exposure profiling
- 2. OMICs-health outcome profiling
- 3. OMICs-exposure profiling
	- •Internal *vs.* external exposomes
	- • Aim: biologically relevant markers of exposures
	- •Specifics: multivariate ^X and ^Y
	- • Investigate each ^platformseparately
	- • Integrate the different ^platforms(cross-omic analyses)
	- \bullet Possibility to match in experimental studies

- 1.Exposure profiling
- 2.OMICs-health outcome profiling
- 3. OMICs-exposure profiling
- 4. Integrate biomarkers identified in 1-3
	- \Rightarrow investigation of the markers co-action \Rightarrow insights into biological mechanisms
involved involved

- 1.Exposure profiling
- 2. OMICs-health outcome profiling
- 3. OMICs-exposure profiling
- 4. Integrate biomarkers identified in 1-3
- 5. Re-iterate steps 1-4 for other cohorts/age ranges:
	- young children (0-4)

- 1.Exposure profiling
- 2. OMICs-health outcome profiling
- 3. OMICs-exposure profiling
- 4. Integrate biomarkers identified in 1-3
- 5. Re-iterate steps 1-4 for other cohorts/age ranges:
	- young children (0-4); children (4-10)

- 1.Exposure profiling
- 2. OMICs-health outcome profiling
- 3.OMICs-exposure profiling
- 4.Integrate biomarkers identified in 1-3
- 5. Re-iterate steps 1-4 for other cohorts/age ranges:
	- young children (0-4); children (4-10); young adults (18-40)

- 1. Exposure profiling
- 2. OMICs-health outcome profiling
- 3. OMICs-exposure profiling
- 4. Integrate biomarkers identified in 1-3
- 5. Re-iterate steps 1-4 for other cohorts/age ranges:
	- young children (0-4); children (4-10); young adults (18-40); adults (>40)

For ^a given health outcome

- 1. Exposure profiling
- 2. OMICs-health outcome profiling
- 3. OMICs-exposure profiling
- 4. Integrate biomarkers identified in 1-3
- 5. Re-iterate steps 1-4 for other cohorts/age ranges:
- 6. Integration across age classes:

 \Rightarrow investigate age-related effect
modifications & susceptibility modifications & susceptibilityfunctions

- 1.Exposure profiling
- 2. OMICs-health outcome profiling
- 3. OMICs-exposure profiling
- 4. Integrate biomarkers identified in 1-3
- 5. Re-iterate steps 1-4 for other cohorts/age ranges:
- 6. Integration across age classes
- 7. Integration across outcomes:
	- ⇒ investigate potential common
nathological pathways pathological pathways

OMICs/Exposure data: diverse and complex data

- • Nature of the data
	- \circ Categorical variables (e.g. genotype data)
	- \circ Continuous variables (*e.g.* methylation, exposures ...)
- • Dimension: wide range of scales
	- Tens of measurements (exposures)
	- \circ Hundreds of measurements (proteins levels)
	- Tens of thousands of variables: (NMR-MS spectral data)
	- \circ Hundreds of thousands of variables (epigenome scans)
- • Correlated structure in the data:
	- Strength of the correlation varies
	- \circ Correlation structure can either be 'distance-driven' $(e.g~LD~in$
conomics data) or more complex $(e.g. NMP; corrected~data)$ genomics data) or more complex ($e.g.$ NMR spectral data).

⇒ need for computationally efficient and flexible models providing
interpretable results interpretable results

Exposomics: further challenges

- \bullet Effect of environmental exposures
	- Exposure are expected to have subtle effects
	- \circ Mixtures of exposures are active (non-additive effects)

 \Rightarrow need for powerful methods handling multivariate X and Y

• Complex effect: molecular signatures at different levels

 \Rightarrow need to integrate the different OMICs data and explore molecular mechanisms mechanisms

- \bullet Complex effect: the temporal componen^t reflected in the study design
	- Exposures effects have different time scales: acute (experimental studies), mid-term (PEM), and long term (modelled exposures)
	- \circ Potential age effect modification (age-related susceptibility toexposures, and disease)

 \Rightarrow incorporate a longitudinal component in the models

Exposomics: 3 main analytical streams

- Screening models: 'OMICs & Exposure profiling'
	- \circ Aim: identify within each OMIcs platforms $\&$ (sets of) exposures, relevant signatures of exposures
	- Status: established methods, benchmark for Exposomics
- Integrative models: 'Cross-omic' analyses
	- Aim: integrate data arising form several OMIC ^platforms andexplore their interplay
	- Status: methods/strategies are developing
- Models including ^a temporal componen^t
	- Aim: model the temporal componen^t of the exposome
	- \circ Status: experimental...

Profiling methods: **-WAS*

Data definition:

Aim: identify which of the p variables in X (OMICs/ exposure data) are
received with the outcome Y (disease status or (mixtures of) expecure(s) associated with the outcome Y (disease status or (mixtures of) exposure(s))

- The $n < p$ situation:
	- \circ More predictors than observations

⇒ numerically intractable statistical inferences

 \circ Three main approaches have been propose^d to ge^t ^a situationwhere $n > p$

Profiling methods: **-WAS*

Data definition:

Aim: identify which of the p variables in X (OMICs/ exposure data) are
received with the outcome Y (disease status or (mixtures of) expecure(s) associated with the outcome Y (disease status or (mixtures of) exposure(s))

- •• Univariate approaches: look at each predictor in X separately
- \bullet • Dimension reduction techniques: summarize X into a lower dimension metrix matrix
- \bullet Variable selection approach: define the best combination of variables in X to predict Y

Univariate approaches

- •• Principle: assess the association between each column of X and the extreme Y outcome Y
- •• Model formulation: linear model for individual i and predictor j

$$
Y_i = \alpha + \beta X_{ij} + \epsilon_{ij},
$$

where:

- \circ Y_i is the measured outcome (possibly multivariate)
- \circ X_{ij} is the observed value for j^{th} predictor
- \circ α is the intercept
- \circ β is the regression coefficient
- \circ ϵ_{ij} is the residual error measuring the random deviation from the linear relationship

 \Rightarrow *p* models are estimated (one per predictor)

Univariate approaches

- \bullet • Principle: assess the association between each column of X and the extreme Y outcome Y
- \bullet • Model formulation: linear model for individual i and predictor j

$$
Y_i = \alpha + \beta X_{ij} + \epsilon_{ij},
$$

 \Rightarrow how to draw a general conclusion over all p tests performed?

Multiple Testing correction Strategies

- \bullet FWER control:
	- \circ $FWER = \alpha = p(V \ge 1)$: the probability to have at least one FP
	- \circ Aim: define the per-test significance α' ensuring $p(V=0) \ge (1-\alpha)$, where α is arbitrarily set. $-\alpha$), where α is arbitrarily set.
- \bullet FDR control:
	- \circ $FDR=E(V/R)$: the expected prop. of FP among positive calls
	- \circ Aim: define the per-test significance α' ensuring FDR is upper bounded by the desired value
- \bullet • FDR $vs.$ FWER control: FDR is less stringent than FWER
	- \circ FWER 5%: over ¹⁰⁰ experiments <5 contain one (or more) FP
	- \circ \circ FDR control: over the 100 experiments the average #FP \leq 5

⇒ FDR control may be preferred in an exploratory context

Univariate approaches: strengths and limitations

- • Computational efficiency
	- Numerous numerically optimized implementations availabl e
	- Possible parallelisation

```
\Rightarrow can accommodate p > 10^6
```
- \bullet Modelling flexibility
	- \circ Linear models are restricted continuous covariates
	- \circ Generalised linear models adapts to most types of outcomes(binary, categorical, count, survival)
	- \circ No need to model the correlation within X in the model
	- \circ Straightforward adjustment on potential confounders

⇒ application to most OMICs data

- \bullet **Limitations**
	- Restricted to parametric marker-outcome relationship

⇒ generalised additive models (computationally intensive)
dels de net eccent for netential combined effects of ruedic

◦ Models do not account for potential combined effects of predictors⇒ need for multivariate approaches

Two main families of multivariate approaches

- • Dimension Reduction techniques:
	- Aim: Identify summary covariates (components) constructed aslinear combinations of original variables which accuratelyreconstruct in ^a lower dimension the structure of the original data
	- \circ Main approaches: unsupervised $(e.g. PCA)$ and supervised $(e.g.$ PLS-based approaches)
	- \circ Main limitation: results may not guarantee easy interpretability

⇒ need to ensure sparsity of the results

- \bullet Variable selection approaches
	- \circ Aim: identify ^a sparse set of predictors that jointly predicts ^Y
	- \circ Two main approaches: penalised regression (e.g. lasso approaches), and Bayesian Variable Selection approaches (BVS)
		- ⇒ variable selection approaches implicitly correct for multiple testing

The principle of dimension reduction techniques

- •• Aim: Summarize the high dimensional X matrix in a lower dimension space.
- \bullet Definitions/Properties:
	- \circ The original matrix X contains p predictors: X_1, \ldots, X_p
	- \circ The i^{th} principal component PC_i is a linear combinations of the original variables such that:

$$
PC_i = \alpha_{i1}X_1 + \cdots + \alpha_{ip}X_p
$$

- Any X can be decomposed in p orthogonal (non-redundant) PC 's \Rightarrow dimension reduction techniques seek for the linear combination
coefficients to define each of the component coefficients to define each of the component.
- \circ Loadings (linear combination coefficients) measure thecontribution of the original variables to each PC.
- \circ PC 's can be ordered in terms of information restitution \Rightarrow do not necessarily need all PC's for a accurate representation of
the data the data

Main dimension reduction techniques

- • Aim: sequentially estimate the loadings such that they maximize thevariation in the X matrix
	- ⇒ this assumes that data are characterized by their variance-covariance
- \bullet Method: singular value decomposition (eigenvalues/eigenvectors)⇒ eigenvalues measures the proportion of variance explained
- Limitation: unsupervised method; the variation in the data may not be relevant to the outcome of interest.
	- ⇒ no guarantee that PC's are explanatory of the outcome $(e.g. noise)$
⇒ need for supervised methods \Rightarrow need for supervised methods
- \bullet Principle: PLS seeks for PCs that are the most correlated to theoutcome: Definition of the objective function:

$$
\max_{||\boldsymbol{u}_h||=1, ||\boldsymbol{v}_h||=1} cov(X_h\boldsymbol{u}_h, Y_h\boldsymbol{v}_h) \qquad h=1 \dots H
$$

 \Rightarrow PCs are defined to max. the covariance between X and Y

Dimension Reduction Techniques in practice

 \bullet Scree ^plot and Score ^plot:

N=745 orginal covariates.

- \circ \circ 90% variance explained for 80 PC's (\approx 10%)
- \circ \circ Clear discrimination of cases and controls (PC_1) V_1 and PC_2 are strongly associated to Ca/Co)

⇒ efficient visualisation tool

Dimension Reduction Techniques in practice

How to interpret results: Loadings plots \bullet

- Loadings measure the contribution of original variables to the PC \circ
- No probes are clearly driving the PC's \bigcirc
	- \Rightarrow dimension reduction techniques may yield interpretation problems
	- \Rightarrow need to impose sparsity and/or to use supervised methods

Overview of penalised regression models

- •Underlying model: linear model
- \bullet Principle: estimating the regression coefficients under ^a constraint
	- \circ Ridge Regression: constraining the L^2 $^{2}=\sum_{i}\beta_{i}^{2}$ \tilde{j} norm

 $\Rightarrow L^2$ constraint ensures numerical stability if $n\leq p$ and favours $\text{low }\beta\text{'s}$

 \circ LASSO model: constraining the L^1 $\mathbb{E}^1=\sum_i|\beta_j|$ norm

 $\Rightarrow L^1$ constraint ensures sparsity of the results

- Penalised regression in practice
	- \circ Set a calibration parameter λ
	- For a given value of λ the model will return β estimates satisfying \circ the constraint (L^1 or L^2 2 = $\lambda)$

\Rightarrow How to determine λ ?

 \Rightarrow How to determine λ ?
 \Rightarrow k-fold validation procedure: the optimal λ will minimise the prediction mean square error

Overview of penalised regression models

- \bullet Main features of Ridge regression
	- \circ Numerical stability if $n\leq p$
	- \circ The number of predictors with $\beta \neq 0$ is upper bounded by p \circ
- • Main features of Lasso
	- \circ No constraint on the number of retained markers (*i.e* with $\beta \neq 0$)
	- \circ \circ Shrinkage: for large values of λ , regression coefficients are shrunk towards 0
		- ⇒ LASSO ensures sparsity (and interpretability) of the results
- \bullet Main outcomes of penalized regression approaches: penalizedregression coefficients
	- \circ A vector of p regression coefficients
	- \circ Due to the constraint most are estimated to be 0
		- \Rightarrow predictors with non-null regression coefficient are to be
interpreted as jointly being associated to the outcome
			- interpreted as jointly being associated to the outcome
		- \Rightarrow putative biomarkers are jointly identified and no measure of
significance is provided significance is provided

Bayesian Variable Selection Paradigm

Underlying Concept: given a certain function linking X and Y, among the p variables in X only a subset is informative regarding the response Y

- \bullet Definitions:
	- \circ Let γ be a vector of 0's and 1's such that its i^{th} element:

$$
\gamma_i = \begin{cases} 1 & \text{if the } i^{th} \text{ column of } X \text{ is in} \\ 0 & \text{otherwise} \end{cases}
$$

- Set p_{γ} as the number of variables of X that are in the model.
- \circ Let X_{γ} denote the design matrix of dimension $n \times p_{\gamma}$, collating all the columns of X for which $\gamma = 1$.
- \circ \circ Formulation of one model: $Y-\;$ $V_{\alpha\alpha}$ $f(X_{\gamma}) = \epsilon$, where function f defines the relation between X and Y (*e.g.* linear function)

 \Rightarrow *Aim:* given f, estimate the vector γ that best predicts Y

General Approach in Model Selection

- \bullet • Comparing k models in that context relies on the following steps for each model $j \in [1, k]$:
	- $\circ\;\;\mathsf{Set}\;\gamma=\gamma$ j (e.g. null model contains only 0's)
	- \circ Extract X_{γ^j} from X
	- \circ Fit the model Y $f(X_{\gamma^j}$ $_j$) = ϵ
	- \circ Calculate a 'quality-of-fit' statistic S^j \circ
	- \Rightarrow the best model (γ^{opt}) is the one providing the optimal value for S
- Key issues:
	- \circ \circ Defining f and the subsequent S

 \Rightarrow depends on nature of X and Y
as $2^p (p-50 \rightarrow 1 \text{ million of bill})$

• Model space size: 2^p ($p = 50 \Rightarrow 1$ million of billons of models) \circ

 \Rightarrow how to wander efficiently in that huge space?

SSS, one intuitive search algorithm

•Shotgun Stochastic Search (SSS):

- \bullet • Identification of the best model based on gains in S (quality of fit statistics)
- \bullet GUESS: ^a BVS for multiple outcomes
	- Optimised Search algorithm: EMC
	- Computational optimisation: enabling GPU capacity \circ
		- \Rightarrow GUESS is tailored for exposome investigation
 \Rightarrow BUT restricted to linear models (so far)
			- \Rightarrow BUT restricted to linear models (so far)

Variable Selection approaches: strenghts and limitations

 \bullet Multivariate models accounting for combined effects of predictors

⇒ implicit correction for multiple testing
wed nower to detect multivariate/complex

- [⇒]improved power to detect multivariate/complex effects
- • Main features of penalised regression:
	- Computationally efficient
	- Provides easily interpretable results
	- \circ Accommodates all types of outcomes
	- Perfs. are hampered by calibration of the penalisation parameter
- \bullet Main features of BVS:
	- Provides easily interpretable results
	- \circ Accommodates multiple outcomes and most outcomes
	- \circ Easily incorporates adjustment on confounders
	- \circ Integrative analyses (no expensive calibration)
	- \circ Subtle parametrization (although mostly automated)

Wrap-up summary

- \bullet Univariate approaches and multiple testing correction
	- Computationally efficient and highly flexible models
	- Not accounting for potential combined effects of predictors

⇒ towards multivariate approaches

- \bullet Dimension reduction techniques
	- Computationally efficient methods
	- \circ Results may be difficult to interpret

[⇒]need to impose sparsity

- Variable selection approaches
	- \circ Joint modelling of predictors effects
	- Sparse results
	- Computationally intensive

 \Rightarrow complementary methods to derive OMICs biomarkers

Achievements

• 2 publications

Environmental and Molecular Mutagenesis 00:00-00 (2013)

Review Article

Deciphering the Complex: Methodological Overview of **Statistical Models to Derive OMICS-Based Biomarkers**

Marc Chadeau-Hyam, ¹* Gianluca Campanella, ¹ Thibaut Jombart,²
Leonardo Bottolo,³ Lutzen Portengen,⁴ Paolo Vineis, ^{1,5} Benoit Liquet,⁶ and
Roel C.H. Vermeulen^{4,7}

Journal of Statistical Software MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

R2GUESS: a Graphics Processing Unit-based R package for Bayesian variable selection regression of multivariate responses

Benoît Liquet The University of Queensland, Brisbane

Leonardo Bottolo Gianluca Campanella Imperial College London Imperial College London

Sylvia Richardson MRC Biostatistics Unit, Cambridge Marc Chadeau-Hyam Imperial College London

Achievements

- 2 publications
- •Short course: Stat-XP, 1^{st} London edition. Dec 8-12, 2014

Please visit:

http://www1.imperial.ac.uk/publichealth/education/shortcourses/stat_xp/

Still a few seats available!!!!!

Achievements

- •² publications
- •Short course: Stat-XP, 1^{st} London edition, Dec 8-12
- • Helix-Exposomics interactions
	- One simulation study investigating the applicability ofaforementioned methods to exposures and comparing theirperformances
	- \circ Identifying and FDR control issue when highly correlatedexposures (coll. K Strimmer)

 \Rightarrow Expected outcome: 2 publications in 2015

'Cross-omic' analyses: some ways forward

- • Step-wise procedure
	- Analyse each ^platform separately
	- Combine candidates from each ^platform in ^a single model (clustering approaches, network models)
		- ⇒ identify/visualise correlation patterns among candidates
- Integrative models: pooling OMICs data
	- Work in progress: testing BVS on ^a Transcriptomics Proteomi cdataset (EGM data)
		- \Rightarrow restricted to few biologically relevant pools of proteins \Rightarrow need to move towards an hypothesis-free framework
			- ⇒ need to move towards an hypothesis-free framework
	- Methods: multivariate regression models, networks, canonical correlation algorithms
	- Challenges: dimensionality, interpretability, and correlationamong omics data

⇒ preliminary feature selection (filtering and clustering), or
bierarchical framework hierarchical framework

Further methodological challenges

- \bullet Mechanistic investigations
	- Seq \ast *WAS*: ordered lists of markers associated to exposure and to future disease risk
	- \circ Network models within and across classes indicate how theseco-act

⇒ explore/visualise molecular mechanisms involved

- \bullet Investigation the role of age
	- 1- Use of mother-child cohorts
		- Aim: Identify differential OMICs/Exposure signal within pairs
		- \circ Expected outcome: Candidate signals whose effect is modulatedby age

Further methodological challenges

- \bullet Mechanistic investigations
	- Seq \ast *WAS*: ordered lists of markers associated to exposure and to future disease risk
	- \circ Network models within and across classes indicate how theseco-act

⇒ explore/visualise molecular mechanisms involved

- • Investigation the role of age
	- 2- Cross-studies investigations
		- Aim: Identify potential age-related effect modifications
		- \circ Model: match participants wrt exposure levels (across studies) andinvestigate differential OMICs signals
		- \circ Expected outcome: OMICs signals whose level is affected by age \Rightarrow towards the identification of age-related susceptibility functions

Further methodological challenges

- • Mechanistic investigations
	- Seq \ast *WAS*: ordered lists of markers associated to exposure and to future disease risk
	- \circ Network models within and across classes indicate how theseco-act
		- ⇒ explore/visualise molecular mechanisms involved
- • Investigation the role of age
	- 3- Explicit modelling of the exposure history
		- Methods: Compartmental (multi-state) models using exposurehistory

 Parametrisation: age-related susceptibility functions explicitly \circ defined, possible inclusion of OMICs markers

⇒ quantification of the exposure effect on health outcomes