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Overview: Exposomics Aims and Design

• Aims: develop am new methodological framework to:
◦ Assessing the biological/molecular effect of high priority

environmental exposures (internal exposome)
◦ Identify mixture(s) of exposure driving future risks of health

outcomes (external exposome)
◦ Identify how the internal and external exposomes overlap and

concur to future risk of chronic disease
◦ Account to age-related differential effects & susceptibility

function
• Three main types of effects investigated: different study designs

Type of effect Timescale Design Exposures

Acute effect <2 hours Intervention study Pre-post experiment meas.

Short-term effect 24 Hours Personalised Exposure Real-time monitoring

Measurement Campaigns (PEM) (e.g., backpack)

Long-term effect Years Cohort Studies Modelled exposure (LUR...)
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Exposomics data

• Exposure data
◦ Air pollution data
◦ Water pollution data

• OMICs data
◦ In all studies: adductomics, transcriptomics, metabolomics (MS)
◦ In long term (cohort) studies: proteomics and epigenetics

• Age ranges:
◦ Young children 0-4 years old
◦ Children: 5-9 years old
◦ Young adults/Adults: 18-70 years old

• Health outcomes:
◦ Children: birth weight, neurodevelopment
◦ Adults: CVD, CRC, Asthma
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Exposomics data

Study Exp markers Time scale Epigenetics Age

Source

AIR

Oxford Street 2 PMNOxUFP(1) <2hr × 50-70

TAPAS 2 PMNOxUFP(1) <2hr; long-term × 18-60

PEM-adults PMNOxUFP(1) 24hr; long-term X 50-70

PEM-kids INMA PMNOxUFP(1) 24hr X 7-9

Piscina air PMNOxUFP(1) 24hr × 18-40

EPIC-NL ESCAPE Long-term X 50-70

EPIC-Torino ESCAPE Long-term X 50-70

East Anglia ESCAPE-extension Long-term X 50-70

Sapaldia ESCAPE country specific models Long-term X 50-70

ALSPAC LUR Long-term X 0-7

RHEA ESCAPE Long-term X 0-4

Piccoli+ ESCAPE Long-term X 0-4

EPIGENAIR ESCAPE Long-term X 35-70

WATER
Piscina Water pollutants(1) <2hr (40 mins) × 18-40

MCC Water pollutants Long-term X
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling
• External exposome relating to

health outcome
• Aim: Identify (mixtures of)

exposures that drive future risk of
the health outcome

• Specifics: several tens of highly
correlated measures

Exposure

OMICs

Health

Outcome

Young Children
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling
• Internal exposomevs. health

outcome
• Aim: Identify sets of OMICs

prospective and early disease
markers

• Specifics: several thousand of
correlated measures

• Investigate each platform
separately

• Integrate the different platforms
(cross-omic analyses)

Exposure

OMICs

Health

Outcome

Young Children
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling
• Internalvs. external exposomes
• Aim: biologically relevant

markers of exposures
• Specifics: multivariate X and Y
• Investigate each platform

separately
• Integrate the different platforms

(cross-omic analyses)
• Possibility to match in experimen-

tal studies

Exposure

OMICs

Health

Outcome

Young Children

MRC-PHE Centre Investigator’s Seminar – Exposomics – London, 26 Nov, 2014 – p. 4/24



Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

⇒ investigation of the markers
co-action

⇒ insights into biological mechanisms
involved

Exposure

OMICs

Health

Outcome

Young Children
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

5. Re-iterate steps 1-4 for other co-
horts/age ranges:

• young children (0-4)

Exposure

OMICs

Health

Outcome

Young Children
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

5. Re-iterate steps 1-4 for other co-
horts/age ranges:

• young children (0-4);children (4-
10)
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

5. Re-iterate steps 1-4 for other co-
horts/age ranges:

• young children (0-4); children (4-
10); young adults (18-40)
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

5. Re-iterate steps 1-4 for other co-
horts/age ranges:

• young children (0-4); children (4-
10); young adults (18-40);adults
(>40)
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

5. Re-iterate steps 1-4 for other co-
horts/age ranges:

6. Integration across age classes:

⇒ investigate age-related effect
modifications & susceptibility

functions
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

3. OMICs-exposure profiling

4. Integrate biomarkers identified in 1-3

5. Re-iterate steps 1-4 for other co-
horts/age ranges:

6. Integration across age classes

7. Integration across outcomes:

⇒ investigate potential common
pathological pathways
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⇒ highly dimensional project!

MRC-PHE Centre Investigator’s Seminar – Exposomics – London, 26 Nov, 2014 – p. 4/24



OMICs/Exposure data: diverse and complex data

• Nature of the data
◦ Categorical variables (e.g. genotype data)
◦ Continuous variables (e.g. methylation, exposures . . . )

• Dimension: wide range of scales
◦ Tens of measurements (exposures)
◦ Hundreds of measurements (proteins levels)
◦ Tens of thousands of variables: (NMR-MS spectral data)
◦ Hundreds of thousands of variables (epigenome scans)

• Correlated structure in the data:
◦ Strength of the correlation varies
◦ Correlation structure can either be ‘distance-driven’ (e.g LD in

genomics data) or more complex (e.g. NMR spectral data).

⇒ need for computationally efficient and flexible models providing
interpretable results
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Exposomics: further challenges

• Effect of environmental exposures
◦ Exposure are expected to have subtle effects
◦ Mixtures of exposures are active (non-additive effects)

⇒ need for powerful methods handling multivariateX andY

• Complex effect: molecular signatures at different levels

⇒ need to integrate the different OMICs data and explore molecular
mechanisms

• Complex effect: the temporal component reflected in the study design
◦ Exposures effects have different time scales: acute (experimental

studies), mid-term (PEM), and long term (modelled exposures)
◦ Potential age effect modification (age-related susceptibility to

exposures, and disease)

⇒ incorporate a longitudinal component in the models
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Exposomics: 3 main analytical streams

• Screening models: ‘OMICs & Exposure profiling’
◦ Aim: identify within each OMIcs platforms & (sets of) exposures,

relevant signatures of exposures
◦ Status: established methods, benchmark for Exposomics

• Integrative models: ‘Cross-omic’ analyses
◦ Aim: integrate data arising form several OMIC platforms and

explore their interplay
◦ Status: methods/strategies are developing

• Models including a temporal component
◦ Aim: model the temporal component of the exposome
◦ Status: experimental...
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Profiling methods:*-WAS

Data definition:

Predictor matrix:

- n observations

- p variables

X
n Response matrix:

- n observations

- q variables

Y
n

p q

Aim: identify which of thep variables inX (OMICs/ exposure data) are
associated with the outcomeY (disease status or (mixtures of) exposure(s))

• Then < p situation:
◦ More predictors than observations

⇒ numerically intractable statistical inferences
◦ Three main approaches have been proposed to get a situation

wheren > p
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Profiling methods:*-WAS

Data definition:

Predictor matrix:

- n observations

- p variables

X
n Response matrix:

- n observations

- q variables

Y
n

p q

Aim: identify which of thep variables inX (OMICs/ exposure data) are
associated with the outcomeY (disease status or (mixtures of) exposure(s))

• Univariate approaches: look at each predictor inX separately

• Dimension reduction techniques: summarizeX into a lower dimension
matrix

• Variable selection approach: define the best combination ofvariables in
X to predictY
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Univariate approaches

• Principle: assess the association between each column ofX and the
outcomeY

• Model formulation: linear model for individuali and predictorj

Yi = α+ βXij + ǫij ,

where:
◦ Yi is the measured outcome (possibly multivariate)
◦ Xij is the observed value forjth predictor
◦ α is the intercept
◦ β is the regression coefficient
◦ ǫij is the residual error measuring the random deviation from the

linear relationship

⇒ p models are estimated (one per predictor)
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Univariate approaches

• Principle: assess the association between each column ofX and the
outcomeY

• Model formulation: linear model for individuali and predictorj

Yi = α+ βXij + ǫij ,

⇒ how to draw a general conclusion over allp tests performed?
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Multiple Testing correction Strategies

H0 true H0 false Total

H0 rejected V S R

H0 accepted U T p-R

Total p0 p-p0 p

• FWER control:
◦ FWER=α=p(V ≥ 1): the probability to have at least one FP
◦ Aim: define the per-test significanceα′ ensuring

p(V = 0) ≥ (1− α), whereα is arbitrarily set.

• FDR control:
◦ FDR=E(V/R): the expected prop. of FP among positive calls
◦ Aim: define the per-test significanceα′ ensuringFDR is upper

bounded by the desired value

• FDRvs. FWER control: FDR is less stringent than FWER
◦ FWER 5%: over 100 experiments <5 contain one (or more) FP
◦ FDR control: over the 100 experiments the average #FP≤ 5

⇒ FDR control may be preferred in an exploratory context
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Univariate approaches: strengths and limitations

• Computational efficiency
◦ Numerous numerically optimized implementations available
◦ Possible parallelisation

⇒ can accommodatep > 106

• Modelling flexibility
◦ Linear models are restricted continuous covariates
◦ Generalised linear models adapts to most types of outcomes

(binary, categorical, count, survival)
◦ No need to model the correlation withinX in the model
◦ Straightforward adjustment on potential confounders

⇒ application to most OMICs data

• Limitations
◦ Restricted to parametric marker-outcome relationship

⇒ generalised additive models (computationally intensive)
◦ Models do not account for potential combined effects of predictors

⇒ need for multivariate approaches
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Two main families of multivariate approaches

• Dimension Reduction techniques:
◦ Aim: Identify summary covariates (components) constructed as

linear combinations of original variables which accurately
reconstruct in a lower dimension the structure of the original data

◦ Main approaches: unsupervised (e.g. PCA) and supervised (e.g.
PLS-based approaches)

◦ Main limitation: results may not guarantee easy interpretability
⇒ need to ensure sparsity of the results

• Variable selection approaches
◦ Aim: identify a sparse set of predictors that jointly predicts Y
◦ Two main approaches: penalised regression (e.g. lasso

approaches), and Bayesian Variable Selection approaches (BVS)
⇒ variable selection approaches implicitly correct for multiple

testing

MRC-PHE Centre Investigator’s Seminar – Exposomics – London, 26 Nov, 2014 – p. 12/24



The principle of dimension reduction techniques

• Aim: Summarize the high dimensionalX matrix in a lower dimension
space.

• Definitions/Properties:
◦ The original matrixX containsp predictors:X1, . . . , Xp

◦ Theith principal componentPCi is a linear combinations of the
original variables such that:

PCi = αi1X1 + · · ·+ αipXp

◦ Any X can be decomposed inp orthogonal (non-redundant)PC ’s
⇒ dimension reduction techniques seek for the linear combination

coefficients to define each of the component.
◦ Loadings (linear combination coefficients) measure the

contribution of the original variables to each PC.
◦ PC ’s can be ordered in terms of information restitution

⇒ do not necessarily need all PC’s for a accurate representation of
the data
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Main dimension reduction techniques

• Aim: sequentially estimate the loadings such that they maximize the
variation in theX matrix

⇒ this assumes that data are characterized by their variance-covariance

• Method: singular value decomposition (eigenvalues/eigenvectors)

⇒ eigenvalues measures the proportion of variance explained

• Limitation: unsupervised method; the variation in the datamay not be
relevant to the outcome of interest.

⇒ no guarantee that PC’s are explanatory of the outcome (e.g noise)
⇒ need for supervised methods

• Principle: PLS seeks for PCs that are the most correlated to the
outcome: Definition of the objective function:

max
||uh||=1,||vh||=1

cov(Xhuh, Yhvh) h = 1 . . .H

⇒ PCs are defined to max. the covariance betweenX andY
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Dimension Reduction Techniques in practice

• Scree plot and Score plot:
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Dimension Reduction Techniques in practice

• How to interpret results: Loadings plots
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First PC

Second PC

◦ Loadings measure the contribution of original variables tothe PC
◦ No probes are clearly driving the PC’s

⇒ dimension reduction techniques may yield interpretation
problems

⇒ need to impose sparsity and/or to use supervised methods
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Overview of penalised regression models

• Underlying model: linear model

• Principle: estimating the regression coefficients under a constraint
◦ Ridge Regression: constraining theL2 =

∑

i β
2

j norm

⇒ L2 constraint ensures numerical stability ifn ≤ p and favours
low β’s

◦ LASSO model: constraining theL1 =
∑

i |βj | norm

⇒ L1 constraint ensures sparsity of the results

• Penalised regression in practice
◦ Set a calibration parameterλ
◦ For a given value ofλ the model will returnβ estimates satisfying

the constraint (L1 orL2 =λ)
⇒ How to determineλ?

⇒ k-fold validation procedure: the optimalλ will minimise the
prediction mean square error

MRC-PHE Centre Investigator’s Seminar – Exposomics – London, 26 Nov, 2014 – p. 16/24



Overview of penalised regression models

• Main features of Ridge regression
◦ Numerical stability ifn ≤ p

◦ The number of predictors withβ 6= 0 is upper bounded byp

• Main features of Lasso
◦ No constraint on the number of retained markers (i.e with β 6= 0)
◦ Shrinkage: for large values ofλ, regression coefficients are shrunk

towards 0
⇒ LASSO ensures sparsity (and interpretability) of the results

• Main outcomes of penalized regression approaches: penalized
regression coefficients

◦ A vector ofp regression coefficients
◦ Due to the constraint most are estimated to be 0

⇒ predictors with non-null regression coefficient are to be
interpreted as jointly being associated to the outcome

⇒ putative biomarkers are jointly identified and no measure of
significance is provided
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Bayesian Variable Selection Paradigm

Underlying Concept: given a certain function linking X and Y, among thep
variables inX only a subset is informative regarding the responseY

• Definitions:
◦ Let γ be a vector of 0’s and 1’s such that itsith element:

γi =

{

1 if the ith column ofX is in

0 otherwise

◦ Setpγ as the number of variables ofX that are in the model.
◦ Let Xγ denote the design matrix of dimensionn× pγ , collating

all the columns ofX for whichγ = 1.
◦ Formulation of one model:Y − f(Xγ) = ǫ, where functionf

defines the relation betweenX andY (e.g. linear function)

⇒ Aim: given f , estimate the vector γ that best predicts Y
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General Approach in Model Selection

• Comparingk models in that context relies on the following steps for
each modelj,∈ [1, k]:

◦ Setγ = γj (e.g. null model contains only 0’s)
◦ ExtractXγj from X

◦ Fit the modelY − f(Xγj ) = ǫ

◦ Calculate a ’quality-of-fit’ statisticSj

⇒ the best model (γopt) is the one providing the optimal value forS

• Key issues:
◦ Definingf and the subsequentS

⇒ depends on nature ofX andY
◦ Model space size:2p (p = 50 ⇒1 million of billons of models)

⇒ how to wander efficiently in that huge space?
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SSS, one intuitive search algorithm

• Shotgun Stochastic Search (SSS):
Iteration i

p
γ
=k

Iteration i+1

.

.

.

.

.

.

p
γ
=k-1

p
γ
=k

p
γ
=k+1

• Identification of the best model based on gains inS (quality of fit
statistics)

• GUESS: a BVS for multiple outcomes
◦ Optimised Search algorithm: EMC
◦ Computational optimisation: enabling GPU capacity

⇒ GUESS is tailored for exposome investigation
⇒ BUT restricted to linear models (so far)

MRC-PHE Centre Investigator’s Seminar – Exposomics – London, 26 Nov, 2014 – p. 19/24



Variable Selection approaches: strenghts and limitations

• Multivariate models accounting for combined effects of predictors

⇒ implicit correction for multiple testing
⇒improved power to detect multivariate/complex effects

• Main features of penalised regression:
◦ Computationally efficient
◦ Provides easily interpretable results
◦ Accommodates all types of outcomes
◦ Perfs. are hampered by calibration of the penalisation parameter

• Main features of BVS:
◦ Provides easily interpretable results
◦ Accommodates multiple outcomes and most outcomes
◦ Easily incorporates adjustment on confounders
◦ Integrative analyses (no expensive calibration)
◦ Subtle parametrization (although mostly automated)
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Wrap-up summary

• Univariate approaches and multiple testing correction
◦ Computationally efficient and highly flexible models
◦ Not accounting for potential combined effects of predictors

⇒ towards multivariate approaches

• Dimension reduction techniques
◦ Computationally efficient methods
◦ Results may be difficult to interpret

⇒need to impose sparsity

• Variable selection approaches
◦ Joint modelling of predictors effects
◦ Sparse results
◦ Computationally intensive

⇒ complementary methods to derive OMICs biomarkers
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Achievements

• 2 publications
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Achievements

• 2 publications

• Short course: Stat-XP, 1st London edition. Dec 8-12, 2014

Stat -XP

Sta s cal approaches 

To characterize 

The exposome 

From OMICs pla!orms:

Overview-Perspec ves

London, UK

8-12 December 2014

Please visit:
http://www1.imperial.ac.uk/publichealth/education/shortcourses/stat_xp/

Still a few seats available!!!!!
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Achievements

• 2 publications

• Short course: Stat-XP, 1st London edition, Dec 8-12

• Helix-Exposomics interactions
◦ One simulation study investigating the applicability of

aforementioned methods to exposures and comparing their
performances

◦ Identifying and FDR control issue when highly correlated
exposures (coll. K Strimmer)

⇒ Expected outcome: 2 publications in 2015
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’Cross-omic’ analyses: some ways forward

• Step-wise procedure
◦ Analyse each platform separately
◦ Combine candidates from each platform in a single model

(clustering approaches, network models)
⇒ identify/visualise correlation patterns among candidates

• Integrative models: pooling OMICs data
◦ Work in progress: testing BVS on a Transcriptomics Proteomic

dataset (EGM data)
⇒ restricted to few biologically relevant pools of proteins
⇒ need to move towards an hypothesis-free framework

◦ Methods: multivariate regression models, networks, canonical
correlation algorithms

◦ Challenges: dimensionality, interpretability, and correlation
among omics data

⇒ preliminary feature selection (filtering and clustering),or
hierarchical framework
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Further methodological challenges

• Mechanistic investigations
◦ Seq∗ −WAS: ordered lists of markers associated to exposure and

to future disease risk
◦ Network models within and across classes indicate how these

co-act
⇒ explore/visualise molecular mechanisms involved

• Investigation the role of age
1- Use of mother-child cohorts

◦ Aim: Identify differential OMICs/Exposure signal within pairs
◦ Expected outcome: Candidate signals whose effect is modulated

by age
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Further methodological challenges

• Mechanistic investigations
◦ Seq∗ −WAS: ordered lists of markers associated to exposure and

to future disease risk
◦ Network models within and across classes indicate how these

co-act
⇒ explore/visualise molecular mechanisms involved

• Investigation the role of age
2- Cross-studies investigations

◦ Aim: Identify potential age-related effect modifications
◦ Model: match participants wrt exposure levels (across studies) and

investigate differential OMICs signals
◦ Expected outcome: OMICs signals whose level is affected by age

⇒ towards the identification of age-related susceptibility functions
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Further methodological challenges

• Mechanistic investigations
◦ Seq∗ −WAS: ordered lists of markers associated to exposure and

to future disease risk
◦ Network models within and across classes indicate how these

co-act
⇒ explore/visualise molecular mechanisms involved

• Investigation the role of age
3- Explicit modelling of the exposure history

◦ Methods: Compartmental (multi-state) models using exposure
history

S I R D

M

◦ Parametrisation: age-related susceptibility functions explicitly
defined, possible inclusion of OMICs markers

⇒ quantification of the exposure effect on health outcomes
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