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Overview: Exposomics Aims and Design

e Aims: develop am new methodological framework to:

o Assessing the biological/molecular effect of high priprit
environmental exposures (internal exposome)

o ldentify mixture(s) of exposure driving future risks of litha
outcomes (external exposome)

o ldentify how the internal and external exposomes overlap an
concur to future risk of chronic disease

o Account to age-related differential effects & suscepitpil

function

e Three main types of effects investigated: different stuesighs

Type of effect Timescale  Design Exposures

Acute effect <2 hours Intervention study Pre-post expentmeeas.

Short-term effect 24 Hours Personalised Exposure Rea-tmonitoring
Measurement Campaigns (PEM)  (e.g., backpack)

Long-term effect  Years Cohort Studies Modelled exposutéRL.)
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Exposomics data

e EXposure data
o Air pollution data
o Water pollution data

OMICs data
o In all studies: adductomics, transcriptomics, metabotsn(iMS)
o Inlong term (cohort) studies: proteomics and epigenetics

e Age ranges:
o Young children 0-4 years old
o Children: 5-9 years old
o Young adults/Adults: 18-70 years old

Health outcomes:
o Children: birth weight, neurodevelopment
o Adults: CVD, CRC, Asthma
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Exposomics data

Study Exp markers Time scale Epigenetics  Age
Source
Oxford Street 2 PMNOXUF8’ <2hr X 50-70
TAPAS 2 PMNOxUFP!) <2hr; long-term X 18-60
PEM-adults PMNOxUFP) 24hr; long-term v/ 50-70
PEM-kids INMA  PMNOxUFP1) 24hr v 7-9
Piscina air PMNOXUFP) 24hr X 18-40
EPIC-NL ESCAPE Long-term v 50-70
AIR EPIC-Torino ESCAPE Long-term v 50-70
East Anglia ESCAPE-extension Long-term v 50-70
Sapaldia ESCAPE country specific models  Long-term v 50-70
ALSPAC LUR Long-term v 0-7
RHEA ESCAPE Long-term v 0-4
Piccoli+ ESCAPE Long-term v 0-4
EPIGENAIR ESCAPE Long-term v 35-70
waTer  Piscina Water pollutants’ <2hr (40 mins) X 18-40
MCC Water pollutants Long-term v
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling "Young Children
o External exposome relating to
health outcome

e Aim: ldentify (mixtures of)
exposures that drive future risk of
the health outcome

e Specifics: several tens of highly
correlated measures

Exposure

Health
Outcome

OMICs
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling

2. OMICs-health outcome profiling

e Internal exposomes. health
outcome

e Aim: Identify sets of OMICs
prospective and early disease
markers

e Specifics: several thousand of
correlated measures . )

e Investigate each platform
separately

e Integrate the different platforms
(cross-omic analyses)

f Young Children

Exposure
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Main analyses: general analytical plan

For a given health outcome

1. Exposure profiling
2. OMICs-health outcome profiling

3. OMICs-exposure profiling
e Internalvs. external exposomes

e Aim: biologically relevant
markers of exposures

e Specifics: multivariate X and Y

e Investigate each platform
separately : ’

e Integrate the different platforms
(cross-omic analyses)

e Possibility to match in experimen-
tal studies

[ Young Children

Exposure
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Main analyses: general analytical plan

For a given health outcome

N CORNN A

Exposure profiling

OMICs-health outcome profiling
OMICs-exposure profiling

Integrate biomarkers identified in 1-3

= investigation of the markers
co-action
= Insights into biological mechanisms
iInvolved

f Young Children

Exposure

Health
Outcome

OMICs
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Main analyses: general analytical plan

For a given health outcome

Exposure profiling [ Young Ghildren
OMICs-health outcome profiling
OMICs-exposure profiling

Integrate biomarkers identified in 1-3

Re-iterate steps 1-4 for other co-
horts/age ranges :

e young children (0-4)

Exposure

Health
Outcome

OMICs

gk~ WD E
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Main analyses: general analytical plan

For a given health outcome

Exposure profiling

OMICs-health outcome profiling
OMICs-exposure profiling

Integrate biomarkers identified in 1-3

Re-iterate steps 1-4 for other co-
horts/age ranges
e young children (0-4)children (4-
10)

r Young Children
" Children

Exposure

OMICs

o1 3> RN ey
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Main analyses: general analytical plan

For a given health outcome

Exposure profiling

OMICs-health outcome profiling
OMICs-exposure profiling

Integrate biomarkers identified in 1-3

Re-iterate steps 1-4 for other co-
horts/age ranges
e young children (0-4); children (4-
10); young adults (18-40)

f Young Children

U
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Main analyses: general analytical plan

For a given health outcome

Exposure profiling

OMICs-health outcome profiling
OMICs-exposure profiling

Integrate biomarkers identified in 1-3

Re-iterate steps 1-4 for other co-
horts/age ranges
e young children (0-4); children (4-
10); young adults (18-40)adults
(>40)

f Young Children

o1 g SO
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Main analyses: general analytical plan

For a given health outcome

Exposure profiling

OMICs-health outcome profiling
OMICs-exposure profiling

Integrate biomarkers identified in 1-3

Re-iterate steps 1-4 for other co-
horts/age ranges

Integration across age classes:

r Young Children

o1 g SO

or

= Investigate age-related effect
modifications & susceptibility
functions
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Main analyses: general analytical plan

For a given health outcome

o1 g SO

or

Exposure profiling

OMICs-health outcome profiling
OMICs-exposure profiling
Integrate biomarkers identified in 1-3

Re-iterate steps 1-4 for other co-
horts/age ranges

Integration across age classes
Integration across outcomes:

f Young Children

= investigate potential common
pathological pathways

= highly dimensional project!
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OMICs/Exposure data: diverse and complex data

o Nature of the data
o Categorical variables:(g. genotype data)
o Continuous variables:(g. methylation, exposures ...)

e Dimension: wide range of scales
o Tens of measurements (exposures)
o Hundreds of measurements (proteins levels)
o Tens of thousands of variables: (NMR-MS spectral data)
o Hundreds of thousands of variables (epigenome scans)

e Correlated structure in the data:
o Strength of the correlation varies

o Correlation structure can either be ‘distance-drivern; (LD Iin
genomics data) or more complexd. NMR spectral data).

= need for computationally efficient and flexible models pdowy
Interpretable results
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Exposomics: further challenges

o Effect of environmental exposures
o EXposure are expected to have subtle effects
o Mixtures of exposures are active (non-additive effects)

= need for powerful methods handling multivariafeandY

o Complex effect: molecular signatures at different levels

= need to integrate the different OMICs data and explore nuddec
mechanisms

e Complex effect: the temporal component reflected in theystiasign

o EXposures effects have different time scales: acute (expatal
studies), mid-term (PEM), and long term (modelled exposure

o Potential age effect modification (age-related susceisilbo
exposures, and disease)

= incorporate a longitudinal component in the models
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Exposomics: 3 main analytical streams

e Screening models: ‘OMICs & Exposure profiling’

o Aim: identify within each OMiIcs platforms & (sets of) expaoss,
relevant signatures of exposures

o Status: established methods, benchmark for Exposomics

e Integrative models: ‘Cross-omic’ analyses

o Aim: integrate data arising form several OMIC platforms and
explore their interplay

o Status: methods/strategies are developing

e Models including a temporal component
o Aim: model the temporal component of the exposome
o Status: experimental...
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Profiling methods*-WAS

Data definition:

X Y

n Predictor matrix: Response matrix: | |n
- n observations - n observations
- p variables - q variables

Y

Aim: identify which of thep variables inX (OMICs/ exposure data) are
associated with the outcomé (disease status or (mixtures of) exposure(s))

e Then < p situation:
o More predictors than observations
= numerically intractable statistical inferences
o Three main approaches have been proposed to get a situation
wheren > p
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Profiling methods*-WAS

Data definition:

X Y

n Predictor matrix: Response matrix: | |n
- n observations - n observations

- p variables - q variables

Aim: identify which of thep variables inX (OMICs/ exposure data) are
associated with the outcomé (disease status or (mixtures of) exposure(s))

e Univariate approaches: look at each predictaXiiseparately
e Dimension reduction techniques: summarikento a lower dimension
matrix

o Variable selection approach: define the best combinatimaigébles in
X to predictY
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Univariate approaches

e Principle: assess the association between each coludinaoid the
outcomeY

e Model formulation: linear model for individualand predictor

Yi = a+ X + €5,

where:

(@)

(©)

(©)

Y, Is the measured outcome (possibly multivariate)

X, is the observed value fgi" predictor
a IS the intercept
S is the regression coefficient

€;; IS the residual error measuring the random deviation fraen th
linear relationship

= p models are estimated (one per predictor)
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Univariate approaches

e Principle: assess the association between each colut¥namid the
outcomeY

e Model formulation: linear model for individualand predictor

Y = a+ X + €,
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= how to draw a general conclusion over aliests performed?
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Multiple Testing correction Strategies

Hy true | Hg false | Total
Hy rejected \Y S R
Hg accepted U T p-R
Total Po P-Po p

e FWER control:
o FWER=a=p(V > 1): the probability to have at least one FP
o Aim: define the per-test significaneé ensuring
p(V =0) > (1 — «), wherec is arbitrarily set.
e FDR control:
o FDR=FE(V/R): the expected prop. of FP among positive calls
o Aim: define the per-test significanee ensuringF’ D R is upper
bounded by the desired value
e FDRws. FWER control: FDR is less stringent than FWER
o FWER 5%: over 100 experiments <5 contain one (or more) FP
o FDR control: over the 100 experiments the average #£F°
= FDR control may be preferred in an exploratory context
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Univariate approaches: strengths and limitations

o Computational efficiency
o Numerous numerically optimized implementations avadabl
o Possible parallelisation
= can accommodate > 10°
e Modelling flexibility
o Linear models are restricted continuous covariates

o (Generalised linear models adapts to most types of outcomes
(binary, categorical, count, survival)

o No need to model the correlation withixi in the model

o Straightforward adjustment on potential confounders
= application to most OMICs data

e Limitations
o Restricted to parametric marker-outcome relationship
= generalised additive models (computationally intensive)

o Models do not account for potential combined effects of [pteds

= need for multivariate approaches
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Two main families of multivariate approaches

e Dimension Reduction techniques:

o Aim: ldentify summary covariates (components) constrdicte
linear combinations of original variables which accunatel
reconstruct in a lower dimension the structure of the oabdata

o Malin approaches: unsupervisedy. PCA) and supervisea (g.
PLS-based approaches)

o Malin limitation: results may not guarantee easy intermétg
= need to ensure sparsity of the results
e Variable selection approaches

o Aim: identify a sparse set of predictors that jointly predi¥

o Two main approaches: penalised regression (asso
approaches), and Bayesian Variable Selection approaBN&3) (

= variable selection approaches implicitly correct for nulet
testing
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The principle of dimension reduction technigues

e Aim: Summarize the high dimensiona&l matrix in a lower dimension
space.
e Definitions/Properties:
o The original matrixX containsp predictors: X1, ..., X,

o Theit" principal componenfC; is a linear combinations of the
original variables such that:

PCZ :Ozz‘le —|—~~-—|—Ozipo

o Any X can be decomposed inorthogonal (non-redundanBC'’s

= dimension reduction techniques seek for the linear contioima
coefficients to define each of the component.

o Loadings (linear combination coefficients) measure the
contribution of the original variables to each PC.

o P(C's can be ordered in terms of information restitution

=- do not necessarily need all PC’s for a accurate representafi

the data |
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Main dimension reduction techniques

o Aim: sequentially estimate the loadings such that they mae the
variation in theX matrix

= this assumes that data are characterized by their var@mn@atance
o Method: singular value decomposition (eigenvalues/eaigetors)
= eigenvalues measures the proportion of variance explained

o Limitation: unsupervised method; the variation in the daty not be
relevant to the outcome of interest.

= no guarantee that PC’s are explanatory of the outcengenpise)
= need for supervised methods

e Principle: PLS seeks for PCs that are the most correlatdueto t
outcome: Definition of the objective function:

max cov(Xpup, Yovpn) h=1...H
un|=1,]|vn||=1

= PCs are defined to max. the covariance betwEandY
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Dimension Reduction Techniques in practice

e Scree plot and Score plot:

N=745 orginal covariates.
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o 90% variance explained for 80 PCs10%)

o Clear discrimination of cases and contrat&{; and PC'; are
strongly associated to Ca/Co)

= efficient visualisation tool
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Dimension Reduction Techniques in practice

e How to interpret results: Loadings plots

PC
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Probe

o Loadings measure the contribution of original variableghtoPC
o No probes are clearly driving the PC’s

= dimension reduction techniques may yield interpretation

problems

= need to impose sparsity and/or to use supervised methods
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Overview of penalised regression models

e Underlying model: linear model
e Principle: estimating the regression coefficients undemstaint
o Ridge Regression: constraining thé = . 57 norm
= [? constraint ensures numerical stability:if< p and favours
low (’s
o LASSO model: constraining the' = " |3,| norm
= L' constraint ensures sparsity of the results

e Penalised regression in practice
o Set a calibration parametar

o For a given value oA the model will return estimates satisfying
the constraintf! or L? =)\)
= How to determine\?

= k-fold validation procedure: the optimalwill minimise the
prediction mean square error
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Overview of penalised regression models

e Main features of Ridge regression
o Numerical stability ifn < p
o The number of predictors with # 0 is upper bounded by

e Main features of Lasso
o No constraint on the number of retained markers\ith 5 # 0)

o Shrinkage: for large values of regression coefficients are shrunk
towards O

= LASSO ensures sparsity (and interpretability) of the rssul
e Main outcomes of penalized regression approaches: pedaliz
regression coefficients
o A vector ofp regression coefficients
o Due to the constraint most are estimated to be 0

= predictors with non-null regression coefficient are to be
Interpreted as jointly being associated to the outcome
= putative biomarkers are jointly identified and no measure of
significance is provided
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Bayesian Variable Selection Paradigm

Underlying Concept: given a certain function linking X andavhong thep
variables InX only a subset is informative regarding the respayrise

e Definitions:
o Let~ be a vector of 0's and 1's such thatit8 element:

~_J 1 ifthe it" column of X is in
77N 0 otherwise

o Setp, as the number of variables &f that are in the model.

o Let X, denote the design matrix of dimensionx p., collating
all the columns ofX for which~ = 1.

o Formulation of one modell” — f(X.) = €, where functionf
defines the relation between andY (e.g. linear function)

= Aim: given f, estimate the vector ~ that best predicts Y
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General Approach in Model Selection

e Comparingk models in that context relies on the following steps for
each mode}, € [1, k|

o Sety =~/ (e.g. null model contains only 0’s)
o ExtractX,; from X

o Fitthe modelY” — f(X,;) =€

o Calculate a 'quality-of-fit’ statisticS”

= the best modeh(°*?) is the one providing the optimal value f6r

o Key issues:
o Defining f and the subsequest
= depends on nature &f andY
o Model space size2? (p = 50 =1 million of billons of models)
= how to wander efficiently in that huge space?
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SSS, one intuitive search algorithm

e Shotgun Stochastic Search (SSS):

Iteration i Iteration i+1
______________ i
ook e S 2
. p ke
e Identification of the best model based on gain§'i@uality of fit

statistics)

e GUESS: a BVS for multiple outcomes
o Optimised Search algorithm: EMC
o Computational optimisation: enabling GPU capacity

= GUESS is tailored for exposome investigation
= BUT restricted to linear models (so far)
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Variable Selection approaches: strenghts and limitations

e Multivariate models accounting for combined effects ofdoceors

= implicit correction for multiple testing
=Improved power to detect multivariate/complex effects

e Main features of penalised regression:
o Computationally efficient
o Provides easlily interpretable results
o Accommodates all types of outcomes
o Perfs. are hampered by calibration of the penalisationnpater

e Main features of BVS:

©)

©)

©)

Provides easily interpretable results

Accommodates multiple outcomes and most outcomes
Easily incorporates adjustment on confounders
Integrative analyses (no expensive calibration)

Subtle parametrization (although mostly automated)
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Wrap-up summary

e Univariate approaches and multiple testing correction
o Computationally efficient and highly flexible models
o Not accounting for potential combined effects of predistor
= towards multivariate approaches

e Dimension reduction techniques
o Computationally efficient methods
o Results may be difficult to interpret
=need to impose sparsity

e \ariable selection approaches
o Joint modelling of predictors effects
o Sparse results
o Computationally intensive
= complementary methods to derive OMICs biomarkers
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Achievements

e 2 publications

| and Molecul is 00:00-00 (2013)

Review Atrticle

Deciphering the Complex: Methodological Overview of
Statistical Models to Derive OMICS-Based Biomarkers
Marc Chadeau-Hyam, '* Gianluca Campanella,' Thibaut Jombart,

Leonardo Bottolo,’ Lutzen Portengen,” Paolo Vineis, ' Benoit Liquet,® and
Roel C.H.Vermeulen®”

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue I http://www.jstatsoft.org/

R2GUESS: a Graphics Processing Unit-based R
package for Bayesian variable selection regression of
multivariate responses

Benoit Liquet Leonardo Bottolo Gianluca Campanella
The University of Imperial College London Imperial College London
Queensland, Brisbane

Sylvia Richardson Marc Chadeau-Hyam
MRC Biostatistics Unit, Cambridge Imperial College London
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Achievements

e 2 publications
e Short course: Stat-XPf41London edition. Dec 8-12, 2014

MRC-PHE
Centre for Environment & Health

Stat -XP

Statistical approaches
To characterize

The exposome

From OMICs platforms:
Overview-Perspectives

London, UK
8-12 December 2014

Please visit:

http://wwl. 1 nperi al.ac. uk/ publichealth/education/shortcourses/stat Xxp/
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Achievements

e 2 publications

e Short course: Stat-XP4London edition, Dec 8-12
e Helix-Exposomics interactions

o One simulation study investigating the applicability of

aforementioned methods to exposures and comparing their
performances

o |ldentifying and FDR control issue when highly correlated
exposures (coll. K Strimmer)

= EXxpected outcome: 2 publications in 2015
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'Cross-omic’ analyses: some ways forward

o Step-wise procedure
o Analyse each platform separately
o Combine candidates from each platform in a single model
(clustering approaches, network models)
= identify/visualise correlation patterns among candislate

e Integrative models: pooling OMICs data

o Work in progress: testing BVS on a Transcriptomics Proteomi

dataset (EGM data)
= restricted to few biologically relevant pools of proteins
= need to move towards an hypothesis-free framework

o Methods: multivariate regression models, networks, ceabn
correlation algorithms

o Challenges: dimensionality, interpretability, and ctatien
among omics data

= preliminary feature selection (filtering and clusteringy),
hierarchical framework
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Further methodological challenges

e Mechanistic investigations

o Seg — W AS: ordered lists of markers associated to exposure and
to future disease risk

o Network models within and across classes indicate how these
co-act

= explore/visualise molecular mechanisms involved
e Investigation the role of age
1- Use of mother-child cohorts
o Aim: ldentify differential OMICs/Exposure signal withiraps

o EXxpected outcome: Candidate signals whose effect is miedula
by age
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Further methodological challenges

e Mechanistic investigations

o Seg — W AS: ordered lists of markers associated to exposure and
to future disease risk

o Network models within and across classes indicate how these
co-act

= explore/visualise molecular mechanisms involved

e Investigation the role of age
2- Cross-studies investigations

o Aim: lIdentify potential age-related effect modifications

o Model: match participants wrt exposure levels (acrossief)énd
Investigate differential OMICs signals

o EXpected outcome: OMICs signals whose level is affectedgey a
= towards the identification of age-related susceptibililydtions
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Further methodological challenges

e Mechanistic investigations

o Seg — W AS: ordered lists of markers associated to exposure and

to future disease risk
o Network models within and across classes indicate how these

co-act
= explore/visualise molecular mechanisms involved

e Investigation the role of age
3- Explicit modelling of the exposure history

o Methods: Compartmental (multi-state) models using exmosu
history

Y

SO A L
| | -M

o Parametrisation: age-related susceptibility functiordieitly
defined, possible inclusion of OMICs markers

= quantification of the exposure effect on health outcomes
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